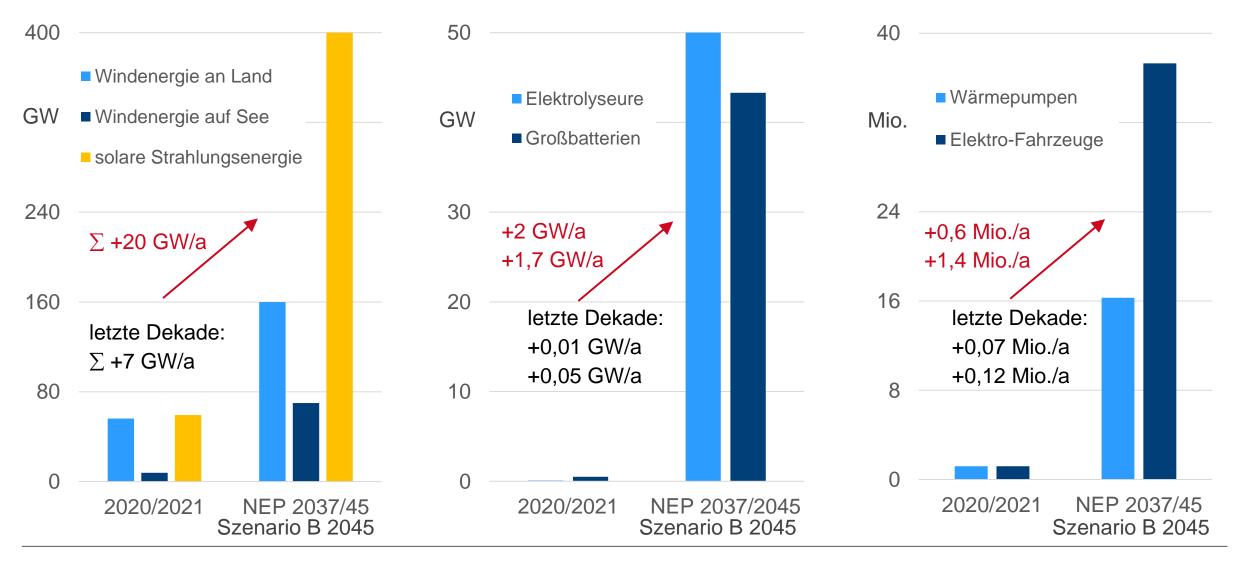
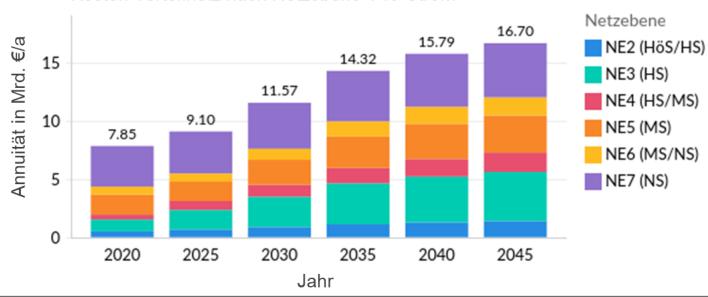


Wesentliche technische Herausforderungen der Netzebenen Strom – Evolutionäres oder Revolutionäres?


Name: Univ.-Prof. Dr.-Ing. Albert Moser

14. Göttinger Energietagung, 10. Mai 2023

Geschwindigkeit als wesentliche technische Herausforderung der Energiewende


Erheblicher Netzausbau in allen Netzebenen

Überblick der Trassenkilometer und Investitionen des Zubaunetzes in den Szenarien A/B/C 2045

	Trassenlänge in km	Investitionsvolumen in Mrd. Euro
Offshore	13.310	145,1
Onshore	12.430	94,6
Summe	25.740	239,7

Quelle: NEP 2037/45, erster Entwurf

Kosten Verteilnetz nach Netzebene T45-Strom

Quelle: BMWK, Langfristszenarien

Technische Herausforderungen des Übertragungsnetzbetriebs

- Reduzierung von (Netzausbau- und) Redispatchbedarf durch Innovationen im Engpassmanagement
 - Lastflusssteuerende Betriebsmittel (HGÜ, PST) und Netzbooster (Netzkomponenten)
 - Zukünftig industrielle Flexibilitäten und Elektrolyseure
 - Auch dezentrale Flexibilitätsoptionen, z.B. Wärmepumpen, Elektrofahrzeuge und Heimbatteriespeicher
 - Kurative Netzbetriebsführung mit schnell reagierenden Flexibilitäten (HGÜ, PST, Großbatterien, Windenergieanlagen auf See)
- Steigende Anforderungen an die Spannungshaltung
 - Bereitstellung von Blindleistung aus dem Verteilnetz (vor allem aus Hochspannungsnetz)
 - Kondensatorbänke, Ladestromspulen, STATCOM, rotierende Phasenschieber (Netzkomponenten)
- Steigender Bedarf an Momentanreserve für die Frequenzhaltung
 - Anpassung TAR (für Umrichter)
 - marktbasierte Beschaffung (z.B. aus Großbatterien bzw. Windenergieanlagen mit netzbildenden Umrichtern)
 - STATCOM mit Superkondensatoren, rotierender Phasenschieber mit Schwungrad (Netzkomponenten)
- Ausgestaltung der Schnittstellen zwischen Übertragungs- und Verteilnetz
 - Verfügbares bzw. erforderliches Potential dezentraler Flexibilitäten (Wirk- und Blindleistung) für Übertragungsnetz
 - IT-Integration dezentraler Flexibilitäten in Prozesse des Übertragungsnetzbetriebs
 - Koordination der Abrufe dezentraler Flexibilitäten mit Verteilnetzbetreiber

Technische Herausforderungen des Verteilnetzbetriebs

- Reduzierung des erforderlichen Netzausbaubedarfs durch Einführung von Engpassmanagement
 - Netzbelastung durch hohe Gleichzeitigkeit (über Wetter und Strompreise)
 - Steuerung von dezentralen Flexibilitätsoptionen, z.B. EE-Anlagen, Wärmepumpen, Elektrofahrzeugen und Heimbatteriespeichern
 - Abruf über variable Netzentgelte, netzorientierte Steuerung von steuerbaren Verbrauchseinrichtungen und marktgestützte Beschaffung von Flexibilitätsdienstleistungen bzw. Redispatch (bei Erzeugungsanlagen und Speichern)
- Steigende Anforderung an Spannungshaltung
 - Unterstützung der Spannungshaltung durch dezentrale Erzeugungsanlagen über TAR
 - Regelbare Ortsnetztransformatoren (Netzkomponente)
- Digitalisierung als Voraussetzung
 - Beobachtung und Prognose des Netzzustandes (Messwerte, online sowie Verarbeitung historischer Messwerte)
 - Algorithmen zur Maßnahmenermittlung (Computing)
 - Zugriff auf Flexibilitäten der Netznutzer
 - Kommunikationsverbindungen zu Sensoren (Messgeräte) und Aktoren (Flexibilitäten der Netznutzer, Netzanlagen)

