Wie unterstützt die Digitalisierung beim effizienten Netzausbau?

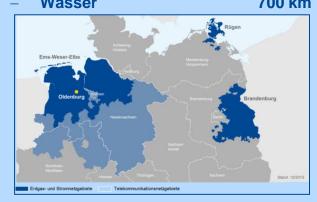
Aus Sicht eines Verteilnetzbetreibers

Dipl.-Ing. Daniel Speiser

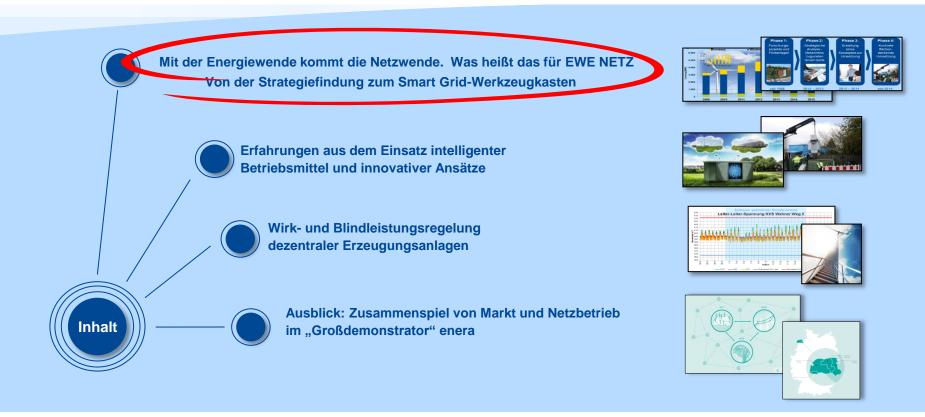
Netzmanagement Strom & Telekommunikation

Göttingen, 09. Mai 2017

EWE NETZ – das sind wir:

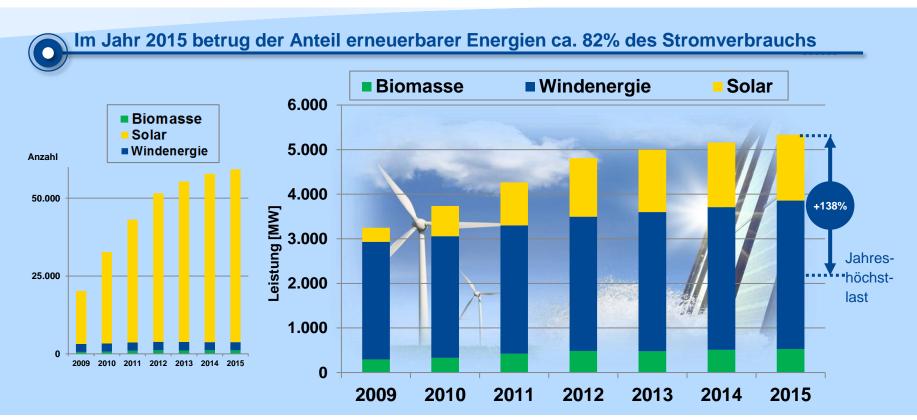

Unser Netz ist geprägt durch ...

- mit einer Einwohnerdichte von ca. 130 EW/km² eher ländlich geprägte Netzstruktur
- rasanten Zuwachs der dezentralen Erzeugung
- konsequente Freileitungsverkabelung in den 80er und 90er Jahren


Zahlen Daten Fakten

- ein Unternehmen der EWE-Gruppe
- seit Gründung 2006 im Markt aktiv
- Eigentümer von Netzen

_	Strom	81 400 km
_	Gas	55 600 km
_	Telekommunikation	35 500 km
	Wassar	700 km



Anteil der erneuerbaren Energien bei EWE NETZ

Steigende Netzauslastungen, Netzspannungen und Blindleistungstransite erfordern neue Lösungen

Der Weg zum intelligenten Netz durchläuft verschiedene Phasen

Phase 1:

Forschungsprojekte und Pilotanlagen

seit 1998

Phase 2:

Strategische
Analyse Bekenntnis
zugunsten
Smart Grids

2012 - 2013

Phase 3:

Erstellung eines Konzeptes zur Umsetzung

2013 - 2014

Phase 4:

Konkrete flächendeckende Umsetzung

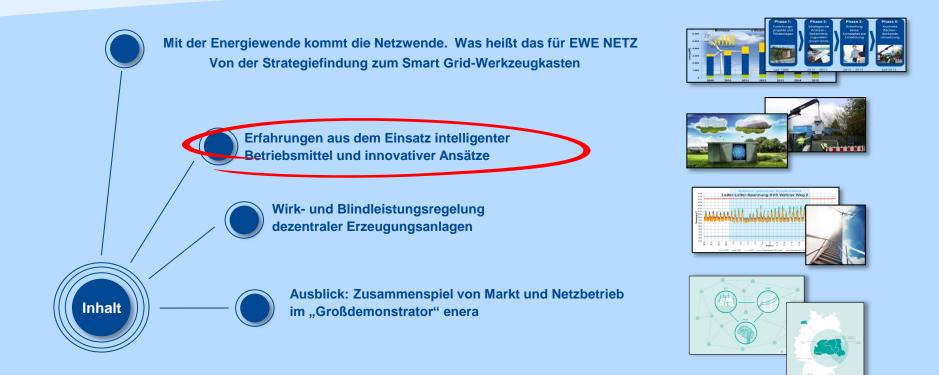
seit 2014

Strategische Entscheidung zur Senkung von Netzkosten über erweiterten Werkzeugkasten

Smart Grid Technologien bieten Kostensenkungspotential

Motivation Smart Grid Baukasten Substitution Signifikantes Kostensenkungspotential Gestern intelligenter Netze gegenüber konventionellem Netzausbau **Klassischer** Netzausbau Spitzenkappung LOM Q-Kompens. Q-Regelung **FACTs** Statcom Heute **INES** Längsregler UW-Regelung rONT **Klassischer** IKT - Nervensystem Netzausbau Projektauftrag: Konventionelles Netz Welche konkreten Maßnahmen sind in den "Intelligenter" nächsten Jahren bei EWE NETZ Netzausbau durchzuführen, um Potential zu heben?

Problem: Heutige Gesetze fordern den Ausbau zu einer "20-spurigen Strom-Autobahn"



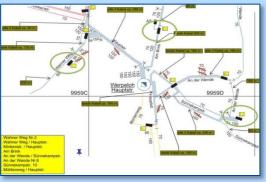
Heute ist der erforderliche Netzausbau zur Integration Erneuerbarer ein "worst case"-Ansatz

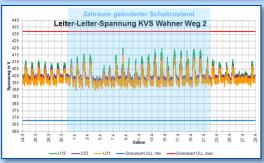
- Nur selten speisen dezentrale Anlagen mit voller Leistung gleichzeitig ein, dennoch müssen die Netze heute auf diese Leistung ausgelegt werden!
- Vergleich Autobahn:
 - Alle Autobahnen müssten so viele Spuren haben, dass zu keinem Zeitpunkt im Jahr ein Stau entsteht!
 - Die meisten Spuren sind die meiste Zeit des Jahres aber ungenutzt.

Der regelbare Ortsnetztransformator (rONT)

Vergrößerung des verfügbaren Spannungsbandes ...

... durch Entkopplung der Netzebenen MS / NS

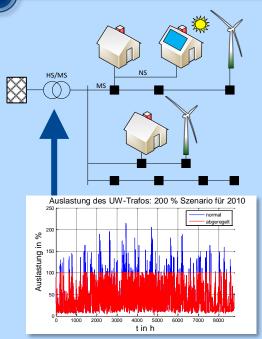

- Stufensteller gleicht Spannungsänderungen durch Einspeiser oder Lasten aus.
- Konventioneller Netzausbau kann vermieden werden
- Erhöhung der Potenziale für Integration von Einspeisern und Lasten
- Reduzierung von Netzstationen durch Vergrößerung von Versorgungsradien
- Ende 2015: EWE NETZ hat 200 rONTs ins Netz integriert
- Ende 2016: EWE NETZ plant ca. 300 rONTs ausgerollt zu haben


rONTs können Netzverstärkungen vermeiden

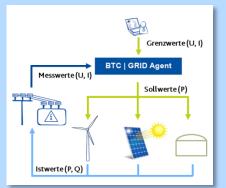
Nachweis von Einsparungen im Rahmen eines Feldtests

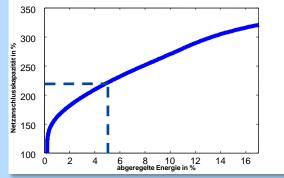
Anzahl Kabel	Start	Ziel	Querschnitt mm²	Leitungslänge m	
1	KVS1	KVS2	150	130	
1	KVS2	iONS	150	290	
1	iONS	KVS8	150	165	
1	iONS	KVS5	70	165	
1	iONS	KVS5	150	165	
2	KVS5	KVS6	150	330	
1	KVS5	KVS7	150	240	
			Summe 150 mm²:	1.320	
			Summe 70 mm ² :	165	

Aus dem Ortsnetz herausgetrennte Kabel



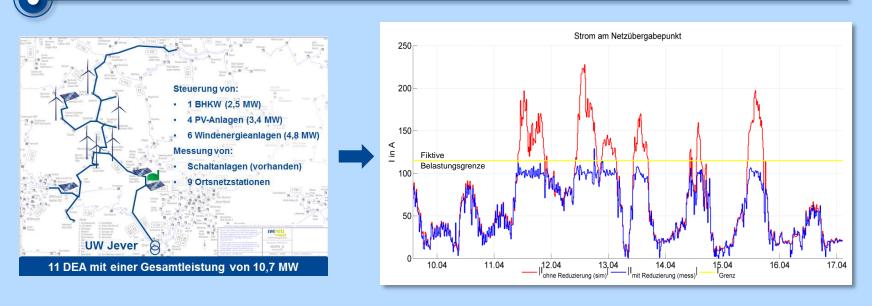
Der 5%-Ansatz



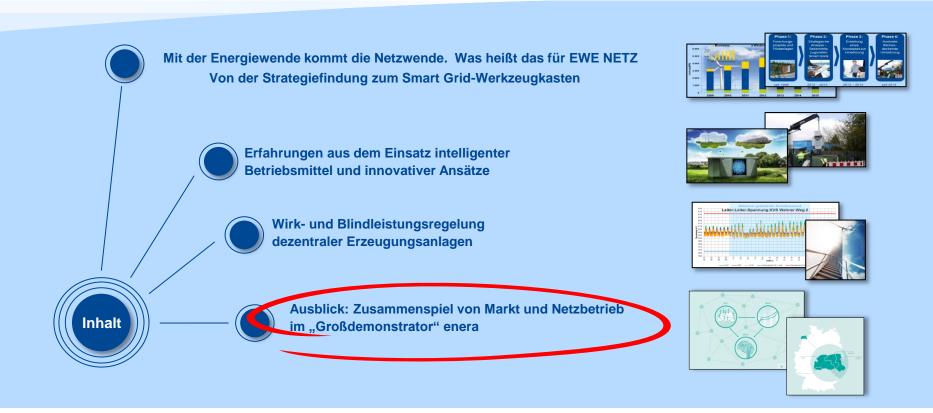


Wirkprinzip der dynamischen Spitzenkappung

- > Steuerung der Erzeugungsleistung in Abhängigkeit von der Betriebsmittelauslastung und Spannungshaltung
- ➤ Abregelung von nur 5% der erzeugten Jahresenergie verdoppelt die Netzanschlusskapazität
- Messtechnischer Nachweis: Leistungsflussabhängige Drosselung dezentraler Erzeugungsanlagen verdoppelt Netzanschlusskapazität



Ergebnisse aus dem Feldtest zum 5%-Ansatz



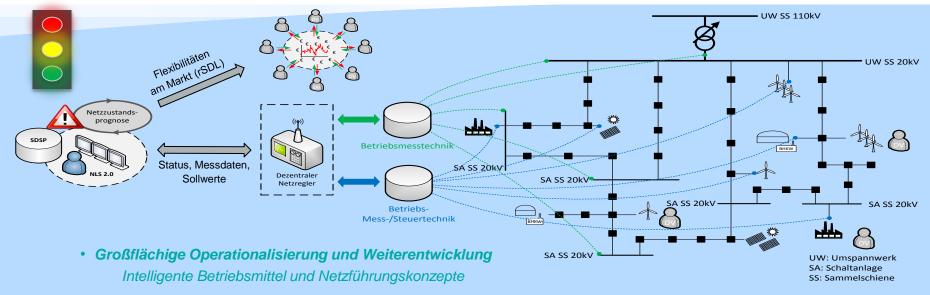
Betrachtung am Netzübergabepunkt für simulierte Grenze für Strombelastbarkeit

Nahezu alle Überlastungen konnten vermieden werden, allerdings wurde dafür z.T. mehr abgeregelt als nötig.

Ausblick: Großdemonstrator enera

EWE ist Konsortialführer des BMWi-geförderten Projektes mit 4-jähriger Laufzeit

ENERGIEWENDE - APPSTORE



DATEN

enera - "Smart Grid Operator konzipieren"

• Ausnutzung bestehender Netzinfrastruktur

Sektorkopplung, Flexibilitätsnutzung statt konv. Netzausbau

• Nachhaltigkeit, Verstetigung
Umsetzungsbeispiele dienen als Empfehlung für

die Gestaltung des rechtlich, regulatorischen Rahmens

Labor für el. Energiesysteme, Jade Hochschule Wilhelmshaven

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Daniel Speiser

Netzmanagement Strom & Telekommunikation

EWE NETZ GmbH

Tel. 04 41 / 48 08-2111

E-Mail: daniel.speiser@ewe-netz.de

Haben Sie noch Fragen?

