Wärmepumpen im Bestand

Heizen, Kühlen, Speichern

30.11.2023

9. Dialogplattform Power to Heat

Optionen und Strategien zur Wärmewende

Fachlicher Hintergrund

University of Applied Sciences

2006 - 2007

Freiwillig Ökologisches Jahr Energieeinspar-Contracting | Hydraulischer Abgleich

2007 - 2013

B. Sc. & M. Sc. Regenerative Energiesysteme

2013 - 2018

Solare Stromspeichersysteme

Prof. Dr.-Ing. Volker Quaschning

Dr.-Ing. Johannes Weniger

Persönlicher Hintergrund – Der elterliche Hof

Quelle: Foto (privat)

Der Gröönlandhof – ein Versuch größtmöglicher Resilienz

von 2017 bis 2019 wurde der Hof wieder ein

Lebens-/Arbeitsort für mehrere Generationen

- Hofgemeinschaft mit 3 Familien & Generationen mit **nachhaltiger Ernährung**
- Bioland Betrieb / Solidarische Landwirtschaft

Der Gröönlandhof – ein Versuch größtmöglicher Resilienz

von 2017 bis 2019 wurde der Hof wieder ein

Lebens-/Arbeitsort für mehrere Generationen

- Hofgemeinschaft mit 3 Familien & Generationen mit nachhaltiger Ernährung
- Bioland Betrieb / Solidarische Landwirtschaft
 und Mobilität
- E-Auto im Car-Sharing, Lastenräder, Velomobil sowie Energieversorgung (KfW 70 Denkmal)
- Photovoltaik, Wärmepumpe und Rest-Holz

Aus aktuellem Anlass | Ziel erreicht!?

1. Platz beim "Landespreis Grüne Hausnummer 2023" am 30.05.2023 in Hannover

"Die rundum sehr gelungene Sanierung des denkmalgeschützten Gulhofs in Verbindung mit dem neuen Wohnkonzept der Hofgemeinschaft hat uns sehr beeindruckt. Das Projekt ist nicht nur insgesamt ästhetisch sehr ansprechend, sondern auch ein gutes Bespiel für die nachhaltige Weiternutzung großer landwirtschaftlicher Gebäude."

Fachlicher Hintergrund

2006 - 2007

Freiwillig Ökologisches Jahr Energieeinspar-Contracting | Hydraulischer Abgleich

2007 - 2013

B. Sc. & M. Sc. Regenerative Energiesysteme

2013 - 2018

Solare Stromspeichersysteme Prof. Dr.-Ing. Volker Quaschning Dr.-Ing. Johannes Weniger

2018 - 2022

Regenerative Energiesysteme Prof. Dr.-Ing. Johannes Rolink

2022 - 2023

Techno-ökonomische Systemanalyse Gruppe: Regionale Energiesysteme Dr.-Ing. Noah Pflugradt

2023 - heute

Klimaschutzmanager

Fokus: Energie & Mobilität

2020 - heute

Freiberufliche Selbständigkeit im Kontext Regenerativer Energiesysteme & E-Mobilität Planung | Beratung | Handel

DGS Akademie Franken

die Solarakademie

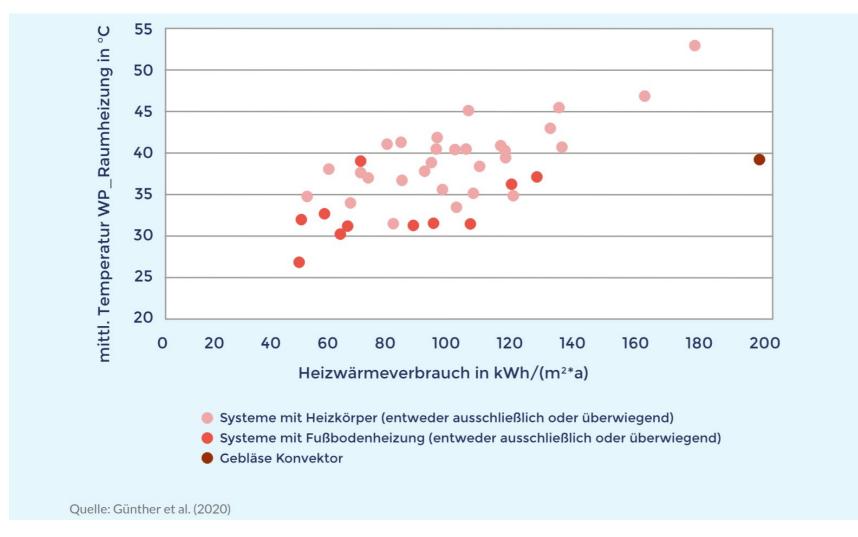
2022 - heute

Externer Referent für Kurse

- Basiswissen Photovoltaik
- Solar(fach)berater

Heizung von heute und morgen

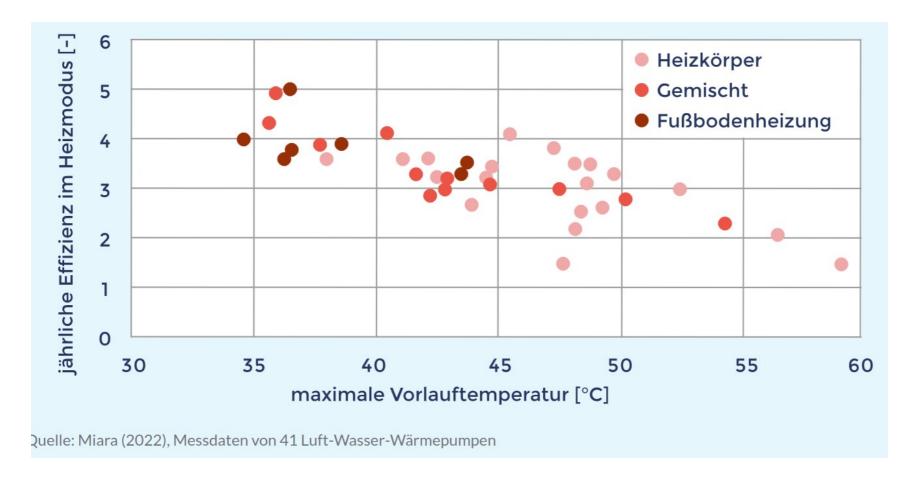
Warum die Wärmepumpe von zentraler Bedeutung ist



- Öl- und Gas werden mittel bis langfristig (2045) komplett aus dem Energiesystem (Strom, Wärme, Verkehr) verschwinden.
- Biomasse als Brennstoff ist extrem begrenzt und verknüpft an lokale Feinstaub-Emissionen.
- Ausgangspunkt des absolut größten Teil der Energieversorgung ist dann Strom aus Windkraft und Photovoltaik.
- Die Nutzung von grünem Wasserstoff wird aus Kosten- und Verfügbarkeitsgründen kaum eine Rolle spielen.
- Unter Verwendung von Wärmepumpen wird regenerativer Strom durch kostenfreie Umweltwärme (Boden, Luft, Wasser) in nutzbare Wärme veredelt.

Wärmepumpen

Der Zusammenhang von Dämmstandard und Vorlauftemperaturen



- Grundsätzlich ist eine Gebäudedämmung hilfreich.
- Streubreite zeigt, dass viele Stellschrauben zu niedrigen Temperaturen führen.
- In der Praxis ist die Wärmepumpe vom Altbau bis zum effizienten Neubau technisch einsetzbar.
- Wirtschaftlichkeit stark gekoppelt an Auslegung, Effizienz und lokale Umweltbedingungen.

Wärmepumpen

Der Zusammenhang von Effizienz und Wärmeübergabesystem

- Streubreite zeigt, dass allein das Heizkörper vs. Fußbodenheizung kein alleiniger Indikator für eine gut funktionierende Wärmepumpe ist.
- Varianz bei gleicher mittlerer Temperatur zeigt zudem starke Abhängigkeit der Effizienz von Standort und Marke/Modell auf.

Wärmepumpen

Einordnung in die Sichtweise des gesamten Energiesystems und Infrastruktur

Rahmenbedingungen

- Für ein klimaneutrales Energiesystem braucht es einen rasanten **Markthochlauf** von Wärmepumpen und Elektromobilität.
- Das elektrische Verteilnetz bleibt weitestgehend unverändert.

Konflikte

- Hohe Effizienz (= geringe Betriebskosten) bedingen bei Wärmepumpen tendenziell hohe Investitionskosten (Erschließung der Wärmequelle)
- Niedrige Effizienzen führen Verteilnetze schneller an ihre Grenzen

Lösungsvorschläge

- Endkunden & Fachbetriebe: Hilfestellung zur **Identifikation** möglichst effizienter Wärmepumpen-Modelle und **Quantifizierung des Vorteils**.
- Förderpolitik (GEG, BAFA/KfW) stärker an Effizienz koppeln.

Wärmepumpen | Vorgehensweise in der Praxis

Große Unterschiede zwischen Produkten, Standorten und Installationsbedingungen

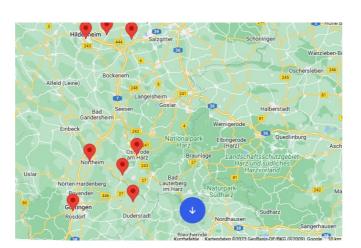
Tipps zum Thema:

- Raumweise Heizlast erstellen und Heizungsverteilsystem rechnen, ggf. optimieren
- **Heizung** nach Ergebnissen **einstellen** (lassen) und ggf. einzelne Heizkörper tauschen

Empfehlung: Heizreport-App

Best-Practice – Was ein Fachbetrieb idealerweise machen würde

Heizlastberechnung

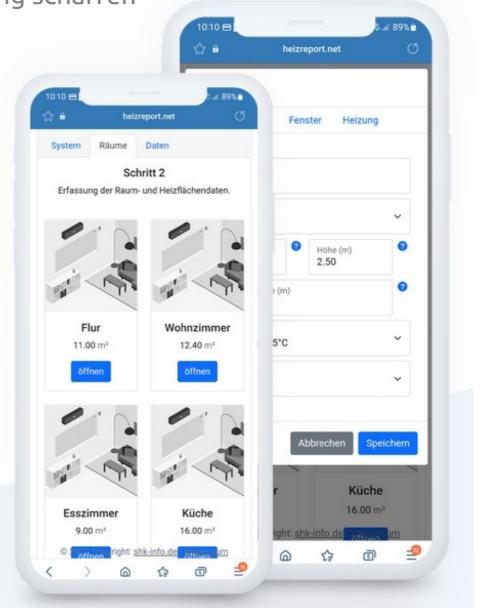

Raumweise Heizlast mit dem vereinfachten Verfahren nach **DIN EN 12831**. Ideal für Bestandsgebäude geeignet.

Heizflächenauslegung

Prüfung der Heizflächen (Heizkörper & Fußbodenheizung) auf Eignung für den effizienten Betrieb mit einer Wärmepumpe.

Hydraulischer Abgleich

Optimale Wärmeverteilung im Gebäude durch Berechnung der benötigten Volumenströme sorgt für ein **förderfähiges** Heizsystem.

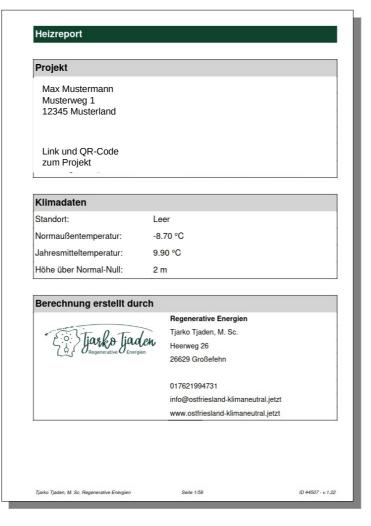

Karte der Fachbetriebe

Empfehlung: Heizreport-App

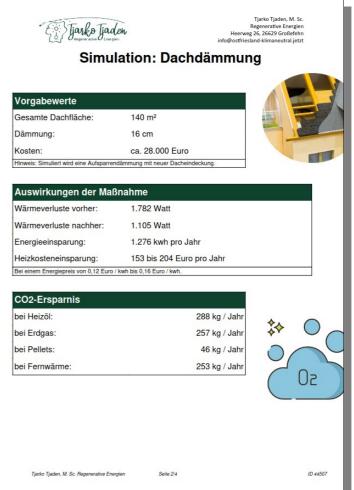
In einer Stunde die Grundlagen für eine effiziente Heizung schaffen

Vorgehensweise vor Ort


- **Individueller Link** über Website eines Fachpartners oder Heizreport selber.
- Durchführung der **Begehung** mit am besten zwei Personen (auch Laien). Material:
 - Smartphone oder Tablet
 - Zollstock und/oder Entfernungsmesser
 - Optional: Grundrisspläne
- In der Heizreport-App
 - Eintragung aller Räume inkl. Angaben
 - Foto vom Gebäude
 - Foto Heizungsraum und Typenschild Heizung
 - Weitere Fotos nach Bedarf (Grundrissplan, etc.)
- **Speichern**, wenn fertig.
- Korrektur und **Berichterstellung** durch Fachpartner.


Empfehlung: Heizreport-App

Drei Ergebnisberichte zur Einschätzung der Gebäude und weiteren Ausführung


Schnell-Check

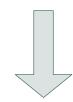
Detail-Heizreport

Sanierungs-Simulation

Wärmepumpen | Datenbank und Simulationsbibliothek

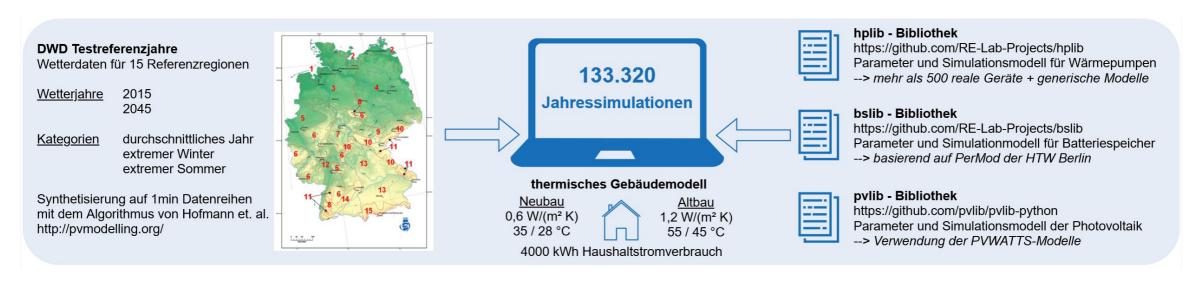
Große Unterschiede zwischen Produkten, Standorten und Installationsbedingungen

Tipps zum Thema:


- Raumweise Heizlast erstellen und Heizungsverteilsystem rechnen, ggf. optimieren
- **Heizung** nach Ergebnissen **einstellen** (lassen) und ggf. einzelne Heizkörper tauschen
- Möglichst effiziente Wärmepumpe passend auswählen: https://www.produktdatenbank-get.at/
- Auf fachlich gute Montage achten: https://www.waermepumpe.de/fachpartnersuche/
- → Stromverbrauch kann sich schnell um 25 bis 50% reduzieren

Column	Description	Comment
Manufacturer	Name of the manufacturer	30 manufacturers
Model	Name of the heat pump model	506 models
Date	heat pump certification date	2016-07-27 to 2021-03-10
Туре	Type of heat pump model	Outdoor Air/Water, Brine/Water, Water/Water
Subtype	Subtype of heat pump model	On-Off, Regulated
Group ID	ID for combination of type and subtype	1 - 6
Refrigerant	Refrigerant Type	R134a, R290, R32, R407c, R410a, other
Mass of Refrigerant [kg]	Mass of Refrigerant	0.15 to 14.5 kg
SPL indoor [dBA]	Sound emissions indoor	15 - 68 dBA
SPL outdoor [dBA]	Sound emissions outdoor	33 - 78 dBA
PSB [W]	Eletrical power consumption, standby mode	3 to 60 W
Climate	Climate definition for set points, which were used for parameter identification	average, colder, warmer
P_el_h_ref [W]	Electrical power at -7°C / 52°C	881 to 23293 W
P_th_h_ref [W]	Thermal heating power at -7°C / 52°C	2400 to 69880 W

- Öffentliche verfügbare und unabhängig gemessene Kennwerte von Wärmepumpen in Europa.
- Überführung in eine menschen- und maschinenlesbare **Datenbank**.
- Validiertes Simulationsmodell für die verschiedenen Wärmepumpen-Typen.
- Erstellung von **generischen** Wärmepumpen-Modellen, die in der Leistung **frei konfigurierbar** und hinsichtlich der Effizienz dem **Marktdurchschnitt** entsprechen.



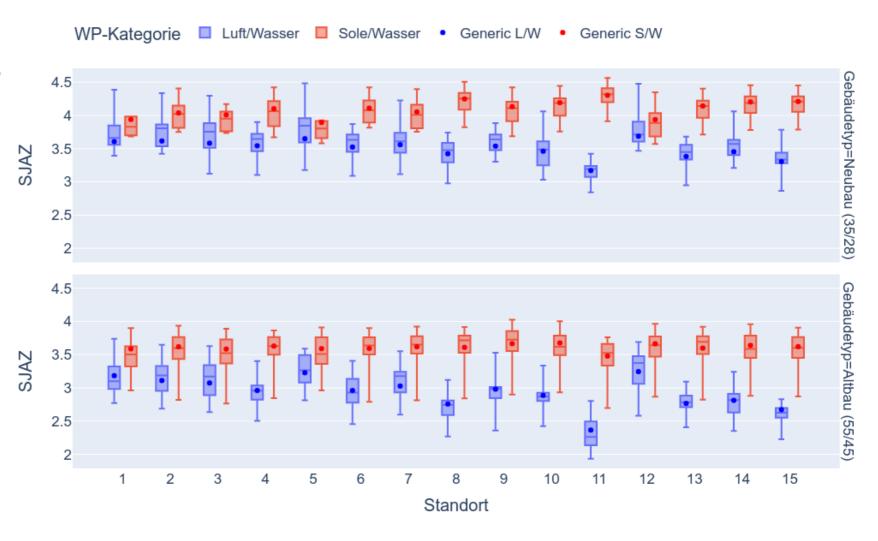
hplib v 1.9

veröffentlicht unter: https://github.com/FZJ-IEK3-VSA/hplib

Wärmepumpen | Datenbank und Simulationsbibliothek

Abbildung des Gesamtmarktes über Massensimulation mit hplib

- Berechnung der Norm-Heizlast für jedes Gebäude über die Norm-Außentemperatur an jedem Standort.
- **Zuordnung** von maximal 15 passenden **marktverfügbaren** Wärmepumpen pro Standort und Gebäudetyp.
- Auswertung verschiedener Kennzahlen aus Nutzer- und Netzbetreibersicht

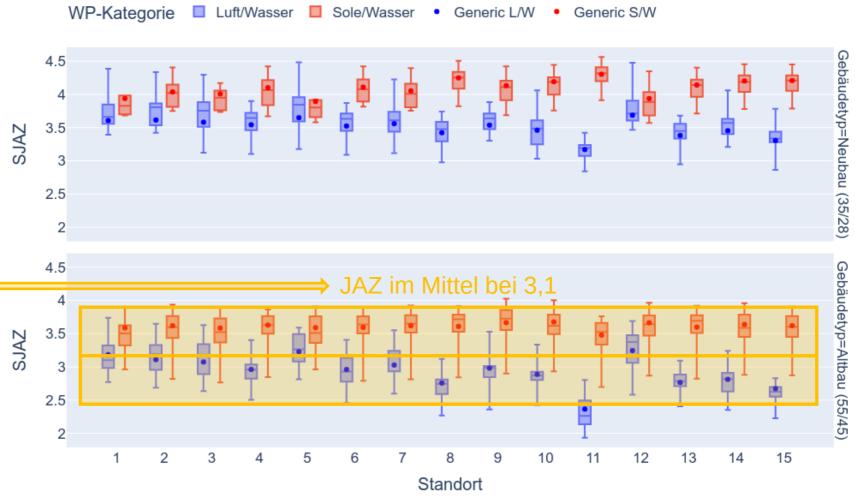


Ergebnisse als Open Data und Web-Tool

Wärmepumpen | Anwendung der hplib

Verteilung der Systemjahresarbeitszahlen (SJAZ) getrennt nach Standort und Gebäudetyp

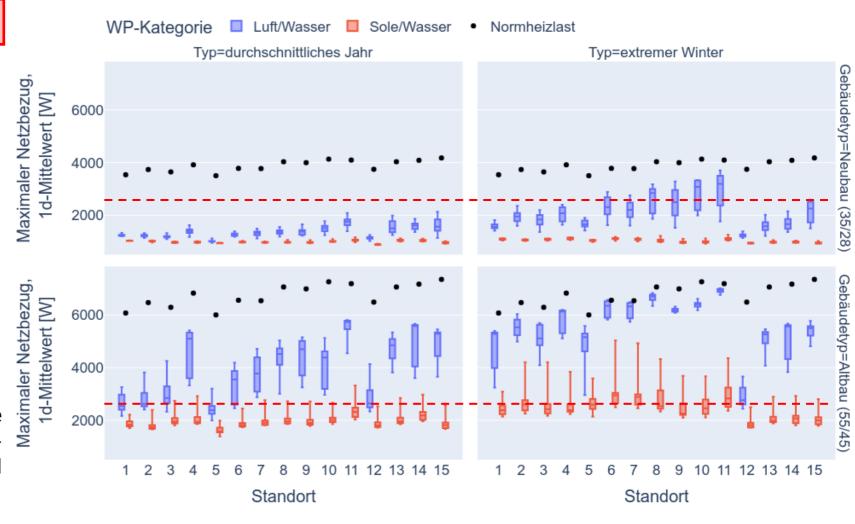
- SJAZ von Luft/Wasser-WP
 weisen sowohl starke
 Abhängigkeiten vom
 Standort als auch vom
 konkreten Modell auf.
- Generische Modelle bilden Marktdurchschnitt gut ab.


Wärmepumpen | Anwendung der hplib

Verteilung der Systemjahresarbeitszahlen (SJAZ) getrennt nach Standort und Gebäudetyp

- Generische Modelle bilden Marktdurchschnitt gut ab.
- Simulationsergebnisse robust und valide im _____
 Vergleich zur Monitoring "WPsmart im Bestand".

https://www.ise.fraunhofer.d e/de/forschungsprojekte/wp smart-im-bestand.html



Wärmepumpen | Anwendung der hplib

Verteilung des maximalen Netzbezugs getrennt nach Standort und Gebäudetyp

Annahme eines kritischen Netzbezugs mit 2,5 kW pro Gebäude

- Wärmepumpen in
 Neubauten und gut
 sanierten Altbauten mit
 Flächenheizungen sollten
 bei Auslegung auf die
 Normheizlast auch bei
 flächendeckendem Einsatz
 kaum für nennenswerte
 Probleme im Verteilnetz
 sorgen.
- Im Bestand bleibt die Herausforderung (noch) sehr hoch. Positiv zeigen sich jedoch in der Praxis die Verbreitung von Propangas-Wärmepumpen (R-290) und zu groß dimensionierte Heizflächen.

Wärmepumpen im Bestand

Heizen, Kühlen, Speichern

Heizen

• Im Interesse der **Endkunden** und **Netzbetreiber** benötigen wir **mehr Anreize**, dass sich möglichst **effiziente Wärmepumpen-Produkte** durchsetzen, bei gleichzeitig starkem Fokus auf möglichst niedrige Investitionskosten.

Kühlen

• Vor allem in Hinblick auf die Kombination mit lokaler Photovoltaik-Erzeugung ist ein zukünftig verstärkter Bedarf bzw. Einsatz von Gebäudeklimatisierung wenig schädlich.

Speichern

- Sowohl lokale Anreize (Überschussstrom per **SG-Ready** oder **EEBus**) als auch "globale" Anreize wie **flexible Strompreise** oder **Netzentgelte** stärken den ökonomischen **Vorteil** von Wärmepumpen bei Nutzung eines **Energiemanagements**.
- Die Nutzung von Energiemanagement-Systemen lässt sich **Jahresarbeitszahl** von Wärmepumpen **signifikant sinken**. Daher ist eine sinkende Jahresarbeitszahl in der Praxis zukünftig verstärkt kein Indiz mehr für eine schlecht funktionierende Anlage.

