Linking physical wall roughness of unlined tunnels to hydraulic resistance

Jochen Aberle¹,², Nils Reidar B. Olsen¹, Pierre-Yves Henry¹, Christy Ushanthy Navaratnam

¹ Norwegian University of Science and Technology, Department of Civil and Environmental Engineering, ² Technische Universität Braunschweig, Leichtweiss-Institut für Wasserbau

BACKGROUND

- **Hydropower tunnels** are an important feature in Norwegian hydropower systems and are used for:
 - the transport of water from reservoirs for energy production
 - the controlled release of flood flows from reservoirs
- How much water can be conveyed in a tunnel depends on its friction, and many of the Norwegian hydropower tunnels are generally unlined, i.e. the tunnel walls are left rough after excavation
- The friction caused by such tunnel walls is generally quantified using empirical approaches, tabulated values, or photographic methods

RESEARCH METHODOLOGY (1)

- Combination of physical scale model studies, computer (numerical) simulations, and analytical considerations
- Terrestrial Laser Scanning of hydropower tunnels to obtain the topography of unlined hydropower tunnels
- Digital Elevation Models derived from the point clouds are used to:
 - mill scaled models of tunnel sections with high accuracy which are used in innovative laboratory experiments
 - perform high resolution numerical simulations
 - determine roughness patterns

TUNNELROUGHNESS PROJECT

- **Primary objective**
 - To improve the accuracy of analytical, experimental and numerical methods for the determination of energy-losses through friction in unlined hydropower tunnels
- **Secondary objectives**
 - Assessment of the roughness characteristics of unlined tunnels based on statistical analyses of tunnel topography and relating geometrical roughness characteristics to spatial scales and tunnel construction methods
 - Development of an advanced approach to link geometrical surface properties to hydraulic roughness and hence friction losses
 - Linking near-wall turbulent flow field features to tunnel roughness characteristics using innovative analytical methods
 - Assessment of the performance of numerical models for capacity calculations in tunnels
 - Improvement of physical scale modelling techniques for the simulation of unlined tunnels

RESEARCH METHODOLOGY (2)

- Measurement of hydrodynamic variables and the turbulent flow field in scale model experiments using advanced instrumentation to determine energy losses and investigate hydrodynamics
- Statistical analyses of roughness patterns by treating the tunnel surface as a random field of elevations to assess the roughness structure and determine characteristic length scales of unlined tunnels
- Determination of friction losses and hydrodynamics in high resolution computer simulations using the same bathymetry as in the laboratory experiments
- Comparison of the results from the physical and numerical experiments to validate the results
- Linking energy losses and hydrodynamic characteristics with roughness characteristics to derive novel approaches for the determination of energy losses
- The final results will be of high relevance for end-users as they will allow for the direct assessment of energy losses in unlined tunnels based on laser-scanning data