

Six instant ways to reduce your CO₂ footprint

+1 ct/kWh Green power

Greenpeace Energy compared to conventional power contract¹

+2 ct/kWh Green gas

Greenpeace Energy compared to conventional gas²

+10 ct/100km Green flight

to compensate CO₂-emissions caused by your specific flight³

- 96% CO₂ by using an BEV

Compared to a motor vehicle from Hamburg - Nuremberg⁵

+up to 70 ct/ Green parcel

to compensate CO₂-emissions caused by transport of your parcel worldwide4

- 99% CO₂ by using the train

Compared to a motor vehicle from Hamburg – Nuremberg⁵

Source:¹ Compared to average standard power contract for 2500 kWh and a basis price of ~ 9,00 €/Month ³ Compared to average fossil NG contract for 7500 kWh and a basis price of ~ 9,90 €/Month ³ atmosfair.de ⁴DHL http://bit.ly/2Jwad4W ⁵ DieBahn http://bit.ly/2q3Q1jO

© Siemens AG 2019

The market is being heavily disrupted but a strong growth is certain

+78%

Global electricity generation growth until 2040¹

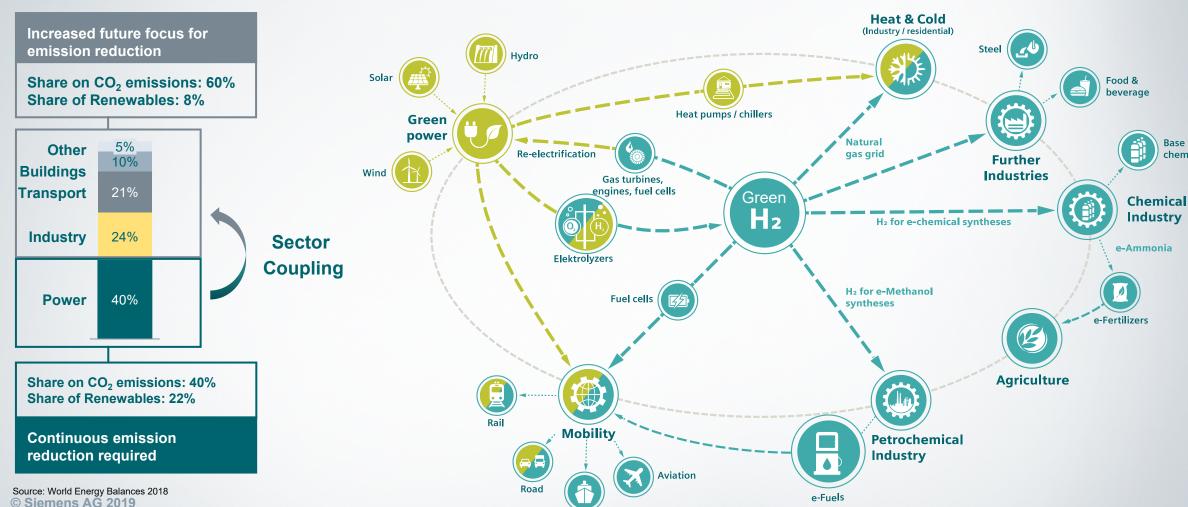
40%

CO₂ emissions from the energy sector²

< 2

ct/kWh, lowest solar prices ever³

Source: ¹IHS Markit 2018, ² World Energy Balances 2018, ³thenational http://bit.ly/2r8Y7Z3

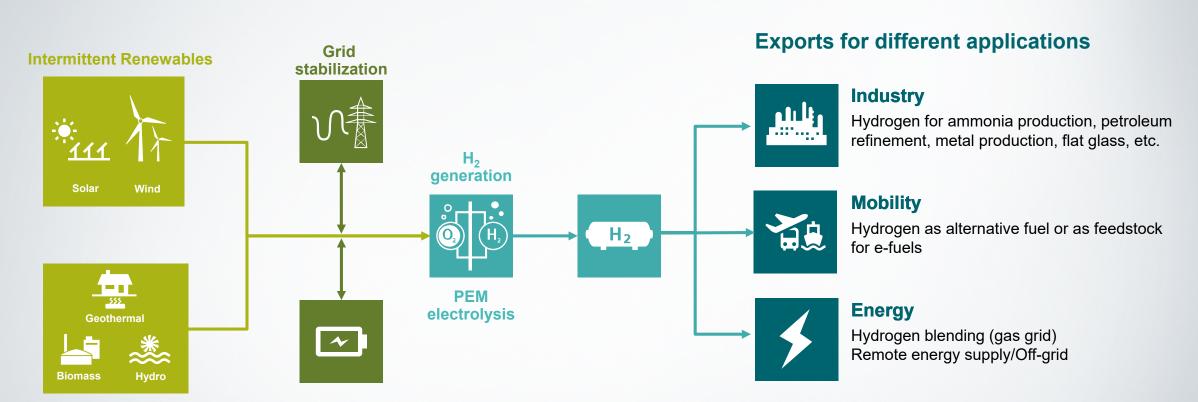

"Sector Coupling" is the key lever for decarbonization of all end-user sectors

chemicals

Shares in global CO₂ emissions by sectors

Sector Coupling – Links and Interactions

Hydrogen from renewables enables large scale long term storage and sector coupling



Renewable electricity generation

Grid Integration

Conversion / Storage

Applications

Continuous Renewables

Seite 5 Nov. 2019 Siemens Hydrogen Solutions

Various countries demonstrate strong potential for Power-to-X production / exports ...

Source: Frontier Economics

© Siemens AG 2019

Seite 6

Many nations have developed an H₂ roadmap to increase pace in CO₂ reduction

Brazil

Wind

Combination

Primarily PV, in parts combination

Hydrogen Sweden **Nationales Innovationsprogramm** Hydrogen being included to National H₂ Wasserstoff- und a larger extent in political **Energy Roadmap** Brennstoffzellentechnologie strategies, regulations and On objectives for Guarantees continuity for R&D and legal framework as well as in production, delivery, addresses the support of first products research programmes Sweden storage, conversion, necessary for market activation infrastructure etc. **Energy Technology Revolution & Innovation** Initiative USA China Blue Book on Infra-Brazilian H2 Roadmap Introduces the hydrogen technologies in the market

infrastructure projects ProH2

Establishes the base of hydrogen and fuel cells R&D and markets

National Hydrogen Roadmap

Bottling Australian sunshine to power Asia to build next great export industry

Industrialisation and manufacture automation, line packing for storage and strategic deployment of HRSs

structure Development of Hydrogen & fuel cell technology innovation,

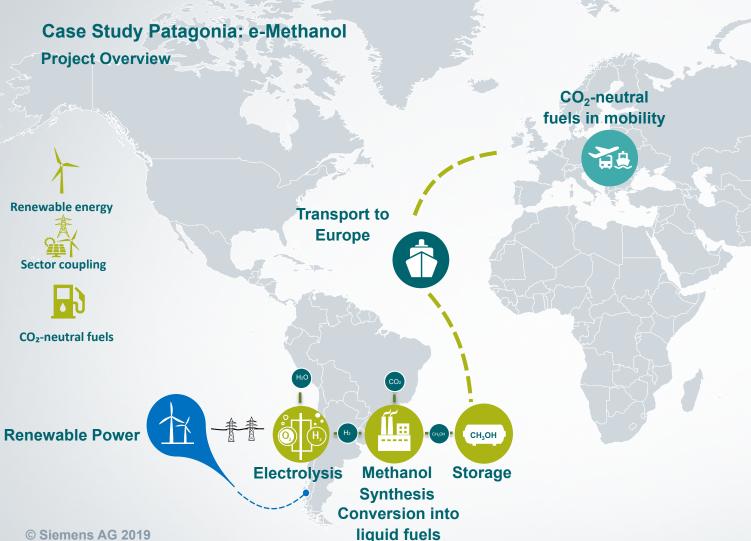
including hydrogen production from multi sources (PEM, SOFC)

Hydrogen Energy and Fuel Cell White Paper

Electricity based on natural gas to reduce enormous air pollution

© Siemens AG 2019

through a series of


Seite 7

Nov. 2019

Australia

Patagonia, Chile: Producing synthetic methanol through electrolysis from wind power - Decarbonize European fuel

Economic opportunities – Political challenges

- Generate hydrogen from renewable power at best wind location and convert to Methanol
- Use e-methanol as an alternative to Bio-Ethanol for blending of fossil fuel or as a feedstock for synthetic fuels or for addins like anti-knocking agents

Regulatory barriers

- Lack of level-playing field of e-fuels versus e-mobility
- Well-to-wheel vs. tank-to-wheel principles
- Recognition of imported e-fuels

Growth story Germany is based on Network Development Plan and exit of coal fired power generation

2022

Exit of nuclear power generation & reduction of >12 GW of coal fired power generation (base: 2017)¹ 2030

- 65 % share of renewables in total electricity consumption²
 - >60 % Reduction of CO₂
 emissions (base 1990)

2038

- Exit of coal fired PG³
- Installed capacity of² renewables >330 GW
- 3 GW Power-to-Gas

The energy transition is facing logistical challenges. Supply and demand must be linked together

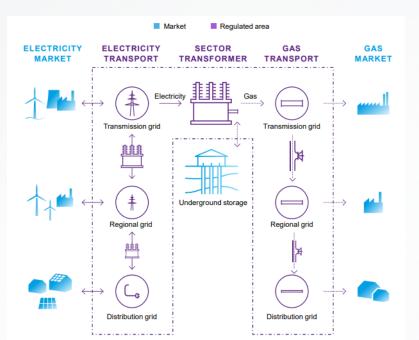
Source: Adapted http://bit.ly/2oJVxYE, http://bit.ly/2rcsDRY, http://bit.ly/2JO0Hu4 © Siemens AG 2019

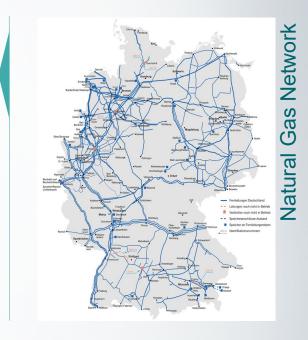
Supply: Renewables potential

Ideal conditions for **big wind parks** (offshore and onshore) **in the north**

 Bigger solar parks and hydro are located in the south / south west of the country but with much smaller capacity compared to wind

Demand: Population and Industries


- Bigger industry and population areas are located in the south / south west of the country
- Small wind, solar and hydro can not cover the renewable demand in this regions



Sector coupling at system level Third party access must continue to be in place when the electricity and gas infrastructures are coupled at system level

Coupling existing infrastructures of the German electricity and gas system with each other

- Liberalized energy market and the "third party access" is needed
- The infrastructure is available to all market participants on a non-discriminatory basis
- Remunerated for their transport services via a regulated network charge

Source: hybridge.net © Siemens AG 2019

Currently there are many distributed pilot projects for Power-to-Gas SIEMENS technologies with a total of 55 MW in Germany

Year	Project	Customer	Power demand	Product offering
2015	Energiepark Mainz	Municipality of Mainz	3.8 MW / 6 MW (peak)	Pilot Silyzer 200
2016	Wind Gas Haßfurt	Municipality of Haßfurt Greenpeace Energy	1.25 MW	Silyzer 200
2017	H&R	H&R Ölwerke	5 MW	Silyzer 200

Source: DVGW 2017 © Siemens AG 2019

Winner of the ideas competition 'Reallabore der Energiewende' Siemens participation mainly in areas of structural changes

Reallabore der Energiewende

GreenHydroChem

- 50 MW PEM Electrolyzer
- Overall expansion target of 100 MW
- Use case: Industry

Hydi • 17. Ele • Us Ind

Hydro Hub Fenne

- 17.5 MW PEM Elektrolyzer
- Use case: Mobility and Industry

BRANDENBURG

CHSEN-ANHALT

BAYERN

BADEN-WÜRTTEMBERG

- + 500 MWh H₂ storage, 2 MW fuel cell, 7.9 MW gas turbine, 2 MW super condenser and 2 MW Libattery
- Use case: Mobility, Energy and Industry

Future of energy in Europe is about decarbonization through "Sector Coupling" and a new market design

Cornerstones of a future energy system

Decarbonization of energy

Transforming the conventional generation capacity into low-carbon assets

Sector coupling

Leveraging renewables in power sector to decarbonize heat, mobility, industry

Power-to-X

Key technology for sector coupling and fuel for decarbonization of energy

Regulatory framework

Has to value CO₂ reduction and needs to be technology open – necessary now!

Disclaimer

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as "expect," "look forward to," "anticipate" "intend," "plan," "believe," "seek," "estimate," "will," "project" or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens' management, of which many are beyond Siemens' control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in Siemens' Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens neither intends, nor assumes any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.

TRENT® and RB211® are registered trade marks of and used under license from Rolls-Royce plc.

Trent, RB211, 501 and Avon are trade marks of and used under license of Rolls-Royce plc.

Note: All performance at ISO conditions is estimated and not guaranteed. All information is subject to change without notice.

Seite 15

Contact page

Gabriele SchmiedelExecutive Vice President
Hydrogen Solutions

Guenther-Scharowsky-Str. 1 91058 Erlangen

E-Mail: gabriele.schmiedel@siemens.com

siemens.com/silyzer